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Abstract Climate change and invasive species pose

important conservation issues separately, and should

be examined together. We used existing long term

climate datasets for the US to project potential

climate change into the future at a finer spatial and

temporal resolution than the climate change scenarios

generally available. These fine scale projections,

along with new species distribution modeling tech-

niques to forecast the potential extent of invasive

species, can provide useful information to aide

conservation and invasive species management

efforts. We created habitat suitability maps for

Pueraria montana (kudzu) under current climatic

conditions and potential average conditions up to

30 years in the future. We examined how the

potential distribution of this species will be affected

by changing climate, and the management implica-

tions associated with these changes. Our models

indicated that P. montana may increase its distribu-

tion particularly in the Northeast with climate change

and may decrease in other areas.

Keywords Invasive species � Climate change �
GARP � Modeling � Species distributions �
Climate variation

Introduction

Climate change and invasive species are two of the

most important issues facing the conservation of

biodiversity today (Thomas et al. 2004). Recently,

there have been many attempts to forecast the impact

of climate change on the potential distribution of both

native and non-native species. Researchers have used

species environment models that capture the niche of

a species using current climate data and projected this

niche onto future climate scenarios (for examples, see

Hijmans and Graham 2006, Levinsky et al. 2007).

These climate scenarios, however, may have greater

variability within a single scenario’s different real-

izations than between different scenarios, leading to

great uncertainty when applying these models to

species distributions (Beaumont et al. 2007).

Most available climate scenarios exist at relatively

coarse spatial resolutions (e.g., a minimum of 0.5�),

and most vegetation distribution models for future

climates have been generated at these coarse resolu-

tions (for example, see Levinsky et al. 2007). These

resolutions have utility for determining patterns of

change and their effects at national, continental and

global scales. However, while these may be useful for

predictions of climate effects such as inundation of

coastal area by rising sea level, they are not

particularly useful for projecting impacts to local

scales, like the relatively small natural areas scattered

across the United States. Additionally, the readily
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available climate change projections, even those

down-scaled to finer resolutions, still have a coarse

temporal scale as they project changes for 100 years

into the future (e.g., Govindasamy et al. 2003).

Resource managers need short term, fine resolution

projections of how climate may affect the areas they

are trying to manage.

In this paper, we examine the utility of future

climate predictions derived from climatic trends in

the twentieth century as surrogates for the coarse

resolution, long range projections of global climate

change scenarios. We use current climate along with

the projected climates to map the distribution of

Pueraria montana (kudzu), an invasive vine in the

Southeastern United States, and examine the potential

change in its distribution with the change in climate.

We also examine the inter-annual variability and

coefficient of variation for the climatic variables in

the past to pinpoint locations potentially more

susceptible to climate variability.

Methods

Datasets

Climate data consisted of 4 km monthly data for the

years 1895–2006 and 800 m data averaged over

1971–2000 for precipitation, minimum temperature,

and maximum temperature (PRISM data available

from http://www.prism.oregonstate.edu/, Daly et al.

2000). The 30 year average dataset was used as input

for current distributions, while the 112 year dataset

was used to analyze climatic trends and to predict

future climate.

Field data locations for our example model of

P. montana were obtained from the National Insti-

tute of Invasive Species Science website (http://

www.niiss.org) and consisted of data points con-

tributed from the Southern Appalachian Information

Node of the National Biological Information Infra-

structure, the Southeast Exotic Pest Council early

detection and distribution mapping system, and the

Invasive Plants Atlas of New England. Additional

data points were obtained from the newly developed

Invasive Plant Atlas of the MidSouth (http://

www.gri.msstate.edu/research/ipams/ipams.php), the

Illinois Department of Natural Resources and TEX-

ASINVASIVES.ORG. These locations totaled 993

presence points scattered across 11 states in the

Eastern US. These data do not capture all known

locations, but are representative of the species’

extent.

Climate analyses

Simple linear regressions were performed for indi-

vidual grid cells for each climate variable including

precipitation, minimum temperature, and maximum

temperature for the average annual data and the

average monthly data (Daly et al. 2000). All

calculations were carried out in ArcGIS raster

calculator (ESRI) using the raster (grid) layer for

each of the variables. The slope (m) of the trend

was calculated as:

Fig. 1 Slope of the line indicating the 112 year annual trend

(1895–2006) for the United States at each grid cell location for

(a) precipitation (mm/year), (b) maximum temperature (8C/

year) and (c) minimum temperature (8C/year) with positive

values indicating an increase over the time period and negative

values indicating a decrease

1374 C. S. Jarnevich, T. J. Stohlgren

123

http://www.prism.oregonstate.edu/
http://www.niiss.org
http://www.niiss.org
http://www.gri.msstate.edu/research/ipams/ipams.php
http://www.gri.msstate.edu/research/ipams/ipams.php


m ¼

P112

i¼1

xi � xð Þ yi � yð Þ

P112

i¼1

xi � xð Þ2

where x is the year and y is the value for precipitation

or minimum or maximum temperature in year xi. The

intercept of the line was then calculated as:

b ¼ y� m � x

where y is the average precipitation or minimum or

maximum temperature and x is the average year.

Using these results, we could then calculate

potential climate for any future year using the

equation for a line, y = mx ? b, substituting the

derived slope raster for m, the desired year for x, and

the derived intercept raster for b.

We examined patterns of climate variability in the

country by calculating average inter-annual variation

for precipitation, minimum temperature, and maxi-

mum temperature using the 112 year data as:

var ¼

P111

i¼1

yi � yiþ1ð Þ

111

where yi is the precipitation or temperature in year i

and yi?1 is the precipitation or temperature in the

subsequent year. Thus, the variation describes the

average variability experienced in each grid cell over

the last 112 years. Along with inter-annual variation

we calculated the coefficient of variation for the

climate variables as:

cv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n �
Pn

i¼1

xi � xð Þ
� �s

x

where x is the temperature or precipitation for year i

and n is the total number of years (here, 112). For the

coefficient of variation calculations, temperature was

transformed to F to ensure that values were positive.

Species analysis

For both current and future climate, we generated 19

bioclimatic variables to better represent growing

conditions compared to simple precipitation and

temperature data following Hijmans et al. (2005).

These 19 variables represent not only the annual

variation in climate, but also capture seasonal vari-

ation and environmental extremes that can facilitate

or inhibit plant growth and establishment of popula-

tions. They include annual mean temperature, mean

diurnal range, isothermality, temperature seasonality,

maximum temperatures of the warmest month, min-

imum temperatures of the coldest month, temperature

annual range, mean temperature of the wettest, driest,

warmest and coldest quarters, annual precipitation,

precipitation of the wettest and driest quarters,

precipitation of seasonality, and precipitation of the

wettest, driest, warmest, and coldest quarters. We

derived bioclimatic variables reflecting current cli-

mate from the monthly 30 year average data and

bioclimatic variables reflecting potential future cli-

mate from the 2035 predicted monthly climate data

layers derived from the long-term trend analysis. The

variables were calculated using the freely available

ESRI ArcInfo AML program (available at http://

www.worldclim.org/bioclim.htm). These 19 biocli-

matic variables served as inputs to a Genetic

Algorithm for Rule-set Prediction model (GARP;

openModeller v 1.0.6; Anderson et al. 2003).

GARP is a member of a suite of modeling tech-

niques known as species environmental matching

models which have been reviewed and tested in

recent literature (see, Elith et al. 2006, Pearson et al.

2006 for reviews). It is one technique requiring only

presence locations for a species as dependent data

rather than presence and absence locations. The free

program (available at http://openmodeller.source

forge.net) uses a genetic algorithm to select a set of

rules that best describe a species’ distribution using

the presence locations and independent variables

(here, the 19 bioclimatic variables). GARP also

allows projection of this model onto other geospatial

layers, such as future climate scenarios.

In GARP, we specified that 80% of the data be

used for training the model, with a convergence limit

of 0.01 and the maximum number of iterations set as

1,000. We employed the ‘best subsets’ procedure

available in OpenModeller, specifying that 100

models be run. The final model resulted from a

summation of the top 10 of the 100 model runs.

We used a threshold independent measure, the

receiver operating characteristic (ROC), which eval-

uates the performance of a model at all possible

thresholds using the area under the curve (AUC;

Fielding and Bell 1997), to validate the model. The
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ROC values calculated by OpenModeller tend to be

inflated because they require both presence and

absence data, requiring the use of pseudo-absence

locations. We used a separate county level dataset

from 2007 that is based on herbarium records and

generated by the Biota of North America Program to

further validate the model, using Zonal Statistics in

Arc to capture the maximum suitability value

for each county in the continental United States.

We calculated the statistics using ROC_AUC version

1.3 available at http://brandenburg.geoecology.uni-

potsdam.de/users/schroeder/download.html. For each

county we extracted the maximum suitability value

from the GARP model for that county. We also cal-

culated specificity, which is the probability that a

presence location is predicted as present (Fielding

and Bell 1997).

We compared the model layer produced using

current climate to the one produced using potential

climate in the year 2035 and to the current distribu-

tion reflected by the BONAP county data. For the two

GARP models, we used the ‘any model predicts’

criterion to define locations as present or absent

following Raxworthy et al. (2003). We merged the

future and current layers together and identified

locations classified as (1) presence locations currently

but not in the future; (2) locations now and in the

future; (3) presence locations only in the future, and;

(4) absence locations now and in the future.

Results

The slope of the regression, indicating the rate of

change in each variable, varied across the United

States (Fig. 1). For precipitation, the average annual

rate of the change ranged from a decrease of

14.6 mm/year to an increase of 13.3 mm/year

(Fig. 1a). The trend in precipitation over the time

period showed the greatest increases in the Midsouth

to the Midwest with other smaller spots along both

coasts, while greatest decreases occurred in the

central to western United States. Average rates of

change were similar for both maximum (Fig. 1b) and

minimum (Fig. 1c) temperature, and the pattern of

change was similar with the southeast generally

decreasing and the western United States generally

increasing in both temperatures. Trends ranged from

an increase of 0.05 or 0.06�C/year for maximum and

minimum temperature, respectively, to a decrease

-0.04�C/year.

Inter-annual variance in precipitation and temper-

ature also varied across the country (Fig. 2a–c).

Precipitation seemed to vary the most in the wettest

areas of the country, including the southeastern US

and the West Coast. Maximum and minimum tem-

peratures differed in their pattern. Both exhibited the

greatest fluctuations between years in the north-

central US, though greatest variance in maximum

temperature extended farther south, while greatest

variance in minimum temperature extended east in

New England.

Coefficient of variations had similar trends for

minimum and maximum temperature, but differed for

precipitation. Highest values for temperature were in

the north-central US and the Rocky Mountains, while

precipitation had the greatest values in the Southwest.

Fig. 2 Average inter-annual variation between 1895 and 2006

for (a) precipitation (mm), (b) maximum temperature (8C) and

(c) minimum temperature (8C) for the United States
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For temperature, the trends were also similar to

annual variance whereas precipitation had an oppo-

site trend.

The GARP model for P. montana had an AUC

value of 0.93 as calculated by the program, indicating

good model performance. Using the county BONAP

dataset to validate the model, the AUC was slightly

lower at 0.86 and sensitivity was 0.85. The locations

missed by the model were at the extremes of the

distribution. The most notable differences in the

current and 2035 climate models for P. montana

include changes in habitat suitability for Florida and

increases in suitability for the Pacific Northwest,

where it has recently appeared, and New England

(Fig. 3a, b).

The differences between distributions under cur-

rent climate and a potential future climate are

highlighted by the maps comparing the future

scenario to the current known county distribution

and the model of current conditions (Fig. 4a, b). The

current distribution model comparison highlights

much more area as stable. The geographic area

indicating the largest amount of land to target for

early detection according to both figures is the

northwest United States. Differences in the Southeast

may be due to lack of reporting, and should probably

be targeted for surveys.

Discussion

Spatial and temporal heterogeneity

The methods described in this paper captured heter-

ogeneity both spatially and temporally. Using data on

climatic trends over the last 112 years allowed us to

examine spatial and temporal heterogeneity at a finer

resolution than that available using global circulation

models. Our trend model predictions of climate

change are probably conservative estimates, given

that they predict a linear change in climate compared

to most global circulation model projections which

indicate a steeper change. Thus, these conditions may

occur sooner than the projected date (2035). The

various existing models of climate change (e.g.,

Hadley, CCM3, etc.) all differ greatly in their

predictions of future climate. The climate scenarios

Fig. 3 Potential distribution of P. montana in the United

States with (a) current climatic conditions (average climate

from 1971–2000) and (b) potential 2035 climate based on the

112 year trend (Fig. 1)

Fig. 4 Potential changes in P. montana distribution using the

‘any model predicts’ criterion for presence between the

potential 2035 distribution (Fig. 3b) and (a) the BONAP

2007 county distribution and (b) the predicted current

distribution (Fig. 3a) with unsuitable indicating absent in both

time scenarios, decreasing indicating present only under

current conditions, stable indicating present in both time

scenarios, and increasing indicating present only in the future

scenario
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based on climatic trends may be a better represen-

tation of conditions that may soon occur. These will

be transient conditions, and may occur sooner than

our year estimate of 2035. However, they still provide

resource managers with projections of species’ dis-

tribution changes due to climate that are likely to

occur in the course of their careers. These predictions

may show what locations may become unsuitable in

the future especially well.

Additionally, examination of our maps of inter-

annual variation should inform managers which

locations may be most susceptible to changes in

climate. Plant species or animal taxa with limited

mobility and multi-year life spans would be required

to survive changes in climate to persist in locations

with high inter-annual variability. These organisms

have already experienced temporal heterogeneity in

climatic conditions.

Near-term climate change modeling

The P. montana example provides a predicted future

distribution that incorporates potential trends in

climate change at a spatial resolution useful at local

management levels. It also provides this information

on a short time scale, providing data for current

management based on potential spread over the next

few years while considering the changing climate.

The difficulty in obtaining the field location data

for P. montana supports advocating a system to share

invasive species data (such as Ricciardi et al. 2000,

Simpson et al. 2006, Graham et al. 2007). Lack of

data across the entire range of a species decreases the

viability of predictive models as a subset may not

encompass the entire range of climatic conditions

where the species occurs. The complete range of

climatic conditions of a species distribution is

necessary to develop an accurate bioclimatic model

(Thuiller et al. 2004).

The comparison of current and future predictions

for P. montana provides useful information to

resource managers. Because P. montana is an inva-

sive species that continues to spread in the US, it may

not yet be established in all predicted presence

locations in the current map. Areas where the species’

distribution is classified as increasing should be

added to watch lists as early detection sites to monitor

and prevent the future spread of the species. Areas

where the species’ distribution is stable should be

targeted as control locations or monitored as early

detection sites if the species has not yet arrived there.

Areas the species’ distribution is predicted as

decreasing may have a lower priority, though if the

species is currently established there, it may persist

for decades (Stohlgren et al. 2008). These sites may

also act as source populations for the spread of the

species to more suitable areas. If the suitability of the

climate is poor, the species may prove to be easier to

locally eradicate than in other locations.

One criticism of climate driven changes in distri-

bution models is the lack of parameters related to

migration to determine how a species will move

between its current and future range (Thuiller et al.

2008). However, these parameters are often difficult

to obtain, and given the erratic pattern of long

distance dispersal, fairly unpredictable (Clark et al.

2003). For invasive species, though, this issue seems

less important given that an invasive species has

demonstrated an ability to spread (i.e., migrate) by

establishing a distribution in the invaded range.

While the mechanisms of spread may not be under-

stood, mobility is a requirement for a species to be a

successful invader, and generally is not limited to

biotic means that may also alter with climate change.

Species adapt to new conditions.

These short-term predictions of climate change

provide information to resource managers about how

a species’ potential distribution may alter over the

span of their career. Many other invasive species can

be modeled in this way. These models provide

information at a temporal and a spatial scale that is

useful to resource managers.

Caveats and planned improvements

The uncertainty associated with future climate pro-

jections is difficult to quantify. However, climate

projections can be easily modified by adding new

climate data yearly. Species distribution modeling

also is an iterative process, requiring new models to

be developed as new locations are added to the

dataset. Lag effects in the invasion process (Crooks

2005) and persistence in suboptimal habitat can also

affect species distribution models. There is no

substitute for accurate and current field data.

We emphasized one species and one modeling

approach here, but we advocate testing multiple

species and multiple models (Evangelista et al.
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2008). The choice of species distributions models is

affected by species attributes (e.g., habitat generalists

versus habitat specialists) and the clustering of

reported presence points, absence points, and poorly

surveyed areas.

Assessing current and future species distributions

at local scales will demand fine resolution data and

climate projections. Down-scaling and verifying

climate data are in their infancy, but hey, you have

to start somewhere!
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